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Exact solutions of the following topics are reviewed: locally Maxwell solutions, spatially uniform relaxation of a binary mixture 
of gases (moment solutions and a generalization of the Bobylev-Krook-Wu solutions), homoenergetic affine flows (the Galkin- 
Truesdell class of exact solutions), spherical outflow-inflow (the Nikol'skii transformation), dominant solutions and power solutions. 
New results are obtained on the second and third topics. Particular attention is devoted to the qualitative properties of the solutions, 
which are of fairly general interest. We mean by an exact solution a solution in explicit form, i.e. in terms of elementary or 
transcendental functions, of the non-linear Boltzmann-Maxwell kinetic equation (the distribution function) or the Maxwell 
transport equations (the moments of the distribution functions). The latter are also called moment solutions of the kinetic equation. 
The molecules of the gas are mainly assumed to be Maxwellian, when the coefficient of viscosity and thermal conductivity depend 
linearly on the temperature. © 2004 Elsevier Ltd. All rights reserved. 

In this paper we attempt to re-established historical correctness [1]. As is well known [1-3], Maxwell 
introduced the fundamental statistical idea of a distribution function, and laid the foundations of 
statistical physics and physical kinetics. When deriving the kinetic moment equations (the Maxwell 
transport equations) he formulated all that was necessary in order to write the kinetic equation for the 
distribution function, which was also done by Boltzmann. Hence, in publications at the beginning of 
the twentieth century the kinetic equation was named after Boltzmann and Maxwell [2], and not just 
Boltzmann [4-6]. 

In view of the complexity of the kinetic equation, the exact solutions describe extremely degenerate 
processes. The computer revolution enabled numerical solutions of a large number of problems to be 
obtained. Nevertheless, considerable attention has been devoted to exact solutions in kinetic theory 
[1, 4-6]. 

Because of limitations of space we do not consider papers in which simplified representations of the 
collision operator (linearized or model operators) are employed or assume that the external forces 
depend on the velocities of the molecules. Preference is given to concluding papers published in easily 
accessible journals. Foremost attention is devoted to new results and results which have not been given 
sufficient attention in existing textbooks [1, 4-6]. 

1. I N I T I A L  R E L A T I O N S  

We will write the system of Maxwell-Boltzmann kinetic equations in the variables Ci, r, t, where the 
peculiar velocity of a particle of the ith component of a mixture of monatomic gases Ci = ~i - n, ~i is 
the absolute velocity of a particle and u is the mean-mass velocity 

1 

Here and below the summation sign denotes summation over all the values of i = 1, 2, . . . ,  N, where 
N is the number of components of the mixture. 

This system has the form 

D 8 8 
Dt - Of + #f)~-~r~' fi = fi(Ci, r, t), F i = Fi(r, t) 

(1.1) 
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Here ]} is the distribution function of the peculiar velocities Ci of the monatomic particles of the ith 
component, F i is the external force, referred to the particle mass mi, Ji is the collision operator and ra 
are the components of the radius vector (q -- x, r e = y and r3 = z); summation over repeated subscripts 
(z, 1~, y = 1, 2, 3 is used and t is the time. 

The central moments of the distribution function are introduced by the formula 

M(n) " ' - "jc)n)fidCi=miJCi%Ci%...Ci%fldC i, {a} = a la2 . . . a  n, n > 0  (1.2) i{a} = mi 

In particular, the mass density and the diffusion velocity of the ith component Di = M! °), Vi = MO)/~ , i  Pi 
and the temperature, the components of the pressure tensor and the vector of the heat flux respectively 
are equal to 

where 

~ 1 M(2)A,I(2)!A.~(3) "[ 
(T, xa[ ~, qa) = /...,[~-~ iaa .... iaf~, 2 ' " i a ~ f ,  n =  E n i ,  ni = pi 

mi 

"Ca~ = paf~ + Saf~p , p = nkT, Pe~a = 0 

Here 5a~ and the stressesp~ are the components of the identity and non-divergent tensors respectively, 
p is the hydrostatic pressure (henceforth called simply the pressure), and k is Boltzmann's constant. In 
hydrodynamics the quantities %~ = - p ~  are called the viscous stresses. 

The Maxwell transport equations (the kinetic moment equations) 

DM(, )  3 ,.(n+l) (~, Duf~ ,0CI ~) 
O-t i{a} + ~rGIV l i {a} l~ -~r i~ - ' -~ )miJ -~ i  f i dCi+  

(1.3) 

0U[3__ l ' ~ 0  (n) "'/Ox} -~'(n) = mirc(n)JidCiji + ,[ (Cia lCi ) f idCi  = 

follow from relations (1.1) and (1.2). Hence we have the conservation equations 

3Pi 3Aa 
3--7 + V p i ( u  +Vi)  = 0, VA - Or a (1.4) 

3p 
b-7 + Vpu  = o (1.5) 

Dua + 3p~f~ 
O--N- Y-rr~ + - ~ . , O f  g~ = 0 

3r~ 
(1.6) 

3 , D T  3qa 3ua 3 3 EpiFiaVia  0 ~nk-b- 7 + ~ + (pS~ + P"~)-~r~- ~kT3r---~niVilx- = (1.7) 

Equations (1.3) are an infinite system: the equation for "*(') ~¢ ,~r(n + 1). zvl i{c¢} contains spatial derivatives u, lwi(a}~ , 
D(n) with the exception of cases (1.4)-(1.7), the right-hand sides of the transport equations l~i{ff} ~ 0 and 

depend on moments of a different order. 
The case of Maxwell molecules is a special one (for them the intermolecular force of interaction of 

the particles i and j  is equal to ~:if  5, where i, j = 1, 2, . . . ,  N and r is the distance between them; the 
transport coefficients are proportional to T), when R~)} are expressed explicitly in terms of moments 
of order m < n. The discovery of these molecules is due to Maxwell's interest in the transport equations. 
In this case, using system of equations (1.3) it is possible to determine certain moments of the distribution 
function, without knowing the function itself (Sections 3, 5 and 7), i.e. it is possible to obtain moment 
solutions of the Boltzmann-Maxwell kinetic equation. 

Below, the molecules will be mainly assumed to be Maxwellian, unless otherwise stated. 



Exact solutions of the Boltzmann-Maxwell kinetic equation 3 

The most general results in calculating RI~)~) are obtained for a simple gas (i.e. for a single-component 
monatomic gas, when the subscript i is omitted). Expressions for R (2) and R (3) are given in [1.6], and 
an expression for R 0) is given in [1]. Formulae have also been obtained for R (s) and R (6) in [7]. An effective 
method of calculating R @) is proposed in [8]. 

In particular, the following system of equations holds for the stressespa[~ of a simple gas [1, 6] 

+ ~rv(UvPa~) + ~ 5 8cq3Vq \ °rr /  + + 2P/~--rr~? = P (1.8) 

Here g = goT is the coefficient of dynamic viscosity (go = const), and the operation ( ) is introduced 
by the formula 

1 1 
(Aa~) : ~(Aa[~ + A[~a) - 58a~Aw, (1.9) 

The third-order moments are 

1 
Qaf~'~ = m f  Co~C~Cvf dC, qa = ~Qe4~f~ (1.10) 

The system of equations for these is also derived in [1, 6]. 
A more general system of transport equations is obtained if we introduced the mean velocities u i 

and the mean temperatures Tz, the stresspi~, and the heat fluxes qi of the components of a mixture of 
gases by the formulae 

[Ui, Ti, Pictf$, q i ] =  iIn~. ' 3nik-'m' C.2, miIC,~Ci;-1~3 ~l:i ° C*2"~i ), mi-~Ci* Ci,2]fi(~i, r, t)d~i (1.11) 

These transport equations are obtained from Eqs (1.1)-(1.3) by replacing u and C i by U i and C*i = 

~i - ui, while retaining the remaining notation. An analysis which we have carried out showed that, with 
the least errors, the moments R!~) (n = 1, 2, 3, 4) corresponding to (1.11) are obtained in [9]: it is only 
necessary to add the factor 7 in front of q~n in formula (6) [9]. In formula (10) from [10] we must add 
terms proportional to wri ,  and in F l l  w e  must replace 4m~0m20 by 1-4m10m20. 

In the case of a binary mixture we have the relations 

P l P 2 , 2  
T = X l T  1 + x 2 T 2 +  o__--2yE--2. ~ , ~n~p 

n i 
A = u 1 - u  2,  x i = - ( 1 . 1 2 )  

n 

2. L O C A L L Y  M A X W E L L ' S  S O L U T I O N S  

The locally Maxwell distribution function of gas molecules 

f M =  n(2rtRT)-3/2expE (~2@T)2J (2.1) 

causes the collision integral to vanish identically, and the dependence on n, T, u on r, t is determined 
by the left (convective) part of the kinetic equation, and these gas-dynamic variables naturally satisfy 
Euler's equations. This also occurs for a gas mixture if all the Maxwellians f ~  are determined for the 
same T and u. In the results described earlier we need only replace n and R = k/m by n i and R i. 

The most complete analysis for the case of a simple gas when there are no external forces is given 
in [11] (external forces are taken into account, for example, in the monographs [4, 6]). We will use the 
notation from [11], replacing ~ by 13g; we have 

1 
T = -2R7----~4, It 4 = a 4 + ~gt + o~t 2, 

u = - ' I f  ln[n(2rcRT) -3/2] = ~ ,  
2), 4 ' 

"t = a - kt - (2~t  + [3g)r + 1"1 × r 

2 
q~ = a 0 + k . r + c t r 2 -  T 

474 

(2.2) 
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The coefficients of the powers of t and r a are arbitrary constants. The three components of the asymmetric 
tensor f~[~ are components of the vector 1~. 

The most important particular solutions were obtained, as is well known, by Maxwell. We obtain the 
Maxwell equilibrium distribution function when only the constants ao, a, a 4 < 0 are non-zero. If only 
ao, ~ and a 4 < 0 are non-zero, then 

T = 1 _ 1 ~  
2Ra4 - const, u = 2a 4 x r  

n = (2nRT)3/2exp[ao-4@4(fl  x r)21 
(2.3) 

The solution (2.1), (2.3) describes the rotation of the gas as a rigid body. The temperature is uniform, 
and the density and pressure increase exponentially with the radius (measured from the axis of rotation) 
and are independent of t. 

In the general case the temperature T = T(t), and the gas motion is the superposition of a uniform 
flow, spherical outflow-inflow and rotation of the gas as a rigid body, and the density and pressure are 
functions of t and r. If ~ ;~ O, but a, [3g, k and ~ are equal to zero, then 

1 o~tr 
T =  u = ~  

2R(a 4 + 0~t2) ' a 4 + ~t 2 

I aa4r----- 2 1 
n = (2rcRT)3/Zexp a 0 + a4 + o~t2 ] 

(2.4) 

Henceforth we will establish the initial conditions when t = 0 (and not t = to). From the condition 
T > 0 it follows that a 4 < 0. If c~ > 0, a solution exists in a finite range of values of t. When Ixa 4 > 0 
the total mass is finite [11] 

M = I p d r  = rt3m(~a4)-3/2expao 

We will consider a special case that will be important later, namely, a ~ 0 and 1~ = 0, and the density 
(and pressure) depend only on t. Substituting expressions (2.2) for 74 and ~/into the relation for • and 
equating the coefficients of r and r 2 to zero, then when t = 0 and t ~ 0, we obtain 

a n = , a = - It, "~4 = ~' -~(~g + 2 c t t )  2 

k + 2 c t r  k 2 2c t  
u = ~g + 2Ct'---""~' * = a0  - 4"~' T ( 0 )  - R ~  

The finiteness of T requires that [~g ~ 0. Putting 

2cxr' = k + 2 c t r ,  t* = t/c, c = ~g/(2~) 

and omitting the prime, we finally obtain 

p(0) c - l r  T(0) 
P = (1 + t*)  3' u = 1 + t * '  T - (1 + t*)2 (2.5) 

( C ' 2  .) C* = (1 + t * ) ( { - u )  f~t = n(O)(2nRT(O))-3/2exP 2RT(O)j ,  (2.6) 

If [3g < 0, then c > 0 and we have spherical outflow of the gas, and when 13g > 0 we have spherical 
inflow (c < 0) for t ~ [0, 1/Ic I). In the first case (p, u, T, f )  --~ 0 as t* -~ ~,, and in the second (P, u, 7) 

~ ,  a n d f t e n d s  to a constant as t* ~ -1 (the initial values, r and ~ are fixed). 
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Consideration of the flow (2.5) and (2.6) will be continued in Section 6. 
Everywhere t* = t/to is dimensionless time, but the quantity to is given by different expressions. 

3. SPATIALLY U N I F O R M  R E L A X A T I O N  OF A B I N A R Y  M I X T U R E  
( T H E  M O M E N T  S O L U T I O N S )  

Spatially uniform relaxation is described by the solution of the Cauchy problem for the following system 
of kinetic equations 

Ofi 
3T = Ji, / , (0,  {,) = (l}i(~i) (3.1) 

when there are no external forces. Here ~0i is a specified function of the particle velocity ~i, i = 1, 2. 
Problem (3.1) is almost always solved numerically. 

In this case, the transport equations (1.3) take the form 

0 l.tr(n) D(n) (3.2) 
~-tz'li{a} = "~'i{a} 

_~ ,,,(n) (0), which satisfy the requirement that the distribution functions When t = 0 the initial values u~lv, il~} 
must be positive, are specified. The infinite chain of moment equations (3.2) in the case of Maxwell 
molecules is expanded in a series of successively solved closed systems of equations [6], since in this 

o(n) case the right-hand sides l~i{c~ } are expressed in terms of the moments M (m), m < n. For example, we 
have from system (1.8) Op~/3t = -pall'c, whence pa~(t) = p~(O)exp(-t/~), where the translational 
relaxation time "c = g/p in this case is constant. Interesting results were obtained in [10, 12-14] for the 
relaxation of a binary mixture of gases with sharply differing masses of the molecules, when the parameter 

E = m i ~  (3.3) 

is much less than unity. Then, when ul ~ u2, T1 ~ T2, the relaxation process is split into qualitatively 
different stages (ml and m2 are the masses of the particles of the "light" and "heavy" components of 
the mixture). The peculiarity of this process is described in many handbooks [15]. However, the existing 
analysis of the relaxation process, as it is clear now, has been carried out with simplifying assumptions. 
As a result, important properties of the process have been overlooked. 

Considered a binary mixture of monatomic gases, consisting of Maxwell molecules, putting 

A = u 1 - u 2 ,  A r = T a - T  2 ( 3 . 4 )  

The number densities ni and the temperature T are constant by virtue of relations (1.4) and (1.7). We 
will use definitions (1.11). To determine the functions (3.4) we have the equations 

OAT 2 2 
OA3___} - =  -ApA, ~ = - 2AngmAT-  ~'~(P2- Pl)Agm A 

A = 2•Al(K12] 1/2, mira2 
mo ~.~mJ mo = ml + m2' ~m -- mo 

(3.5) 

We will assume that the intermolecular forces are equal to ~cijr 5, where i ,j  = 1, 2 and r is the distance 
between particles. 

We have from the first equation of (3.5) 

A(t*) = A(0)exp(- t*) ,  t 1 (3.6) t*  = - - ,  "cu - 
"~u Ap 

We will write the solution of the second equation of (3.5) as 

AT(t*) _ IAr(_~O)_hA2(O)]exp(_t*l+ hA2(0)exp(-2t  *) (3.7) 
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We have used the following notation in solution (3.7) 

"C~ "~T -- p X2 APm rnl 
- Xu 2n,ttm = 2e'-'-2' h = 3--~--f(p2- pl)x,  - 3kT  (3.8) 

The quantity ~- is equal to the ratio of the relaxation times of the temperature and velocity differences. 
On the right-hand sides of formula (3.8) we have introduced approximate values, obtained for 
= ~/ml/m 2 ~ 0 and fixed remaining parameters of the gases and of the initial values (in particular, 

xi). Under these conditions the relaxation times differ sharply: "c~- ~> 1. 
Previously in [13, 14] the quantity hA2(0) was in fact assumed to be negligibly small. If, however, Ar(0)/T 
hA2(0) - 1, it cannot be neglected and when t* - "c~r, e ~ 1, taking into account the fact that 

"c7- >> "Cu, we obtain 

At(t*) = [zXr(O)_ ThAZ(O)]exp[_~ I/',,'x 
\ "CT/ 

(3.9) 

This result is of considerable importance when deriving the equations of two-fluid gas dynamics [16]. 
Usually it is implicitly assumed that the relaxation has a purely exponential form. However, when 

the non-uniform parts of the transport equations are taken into account the form of the relaxation turns 
out to be more Complex. For example, for certain values of the parameters of the problem, one of the 
eigenvalues 2~ of the equations for the stresses is equal to the coefficient in the exponential function 
occurring in the non-uniform part, and a term appears in the solution proportional to texp(-Zt). 

We will consider the general problem of the relaxation of the stresses Pimp. We will introduce the 
following notation. 

rci= P--/aP, U =  2hIAa(0)Ap(0)-~ i~pAZ(0)  1 (3.10) 
P 

Then the system of equations for the stresses [9, 10] takes the form 

d~i 
dt--- ~ = I'il/~ 1 + Fi2/~ 2 + Fi3Uexp(-2t*)  

A/I 2 
+ e _ 2n*o~(B + E2), 

F I I - - F * I  = - ] / l n , + e  2 
1 O~ = 

(n* + 1~2)(1 + I~ 2) 

3Ln* 
FI2 = 1~L£2' FI3 = 2(1 + n *  -n*-132-')( ) F21 = n 'F12  

(3.11) 

F2E = - F *  2 = _ ]/zn*e ^fl + e 2 n* + 2 - 2 1 e 2 ( 1  + Be2)' F23 = F13~2 

Here  

n* n2 3A2 (2Kii'] l/z 
= nl--' B = 4~1' L = 2 ( 1 - B ) ,  ]/i = B\KI2/  (3.12) 

According to well-known results [2], A1 = 0.422 and A2 = 0.436. The eigenvalues of system (3.11) 
are as follows: 

1 , 1/2 
= ~{F1, +r*2 + [(r *,-r 2)2+4rlzrzl] } ~1,2 (3.13) 

The solution will not be purely exponential if, for example, 2~ 1 = 2 (it can be shown that this equality 
is satisfied for different values of the parameters of the problem). When e --~ 0 and for fixed values of 
the remaining parameters of the problem we have 

~1 --4 2~ = 2B + ] / l /n  *, ~'2 -' ') ~0 = g]/2 (3.14) 
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Limiting values are denoted by the zero superscript. The equality 1: = 2 arises under the completely 
realistic condition ‘yl = 0.45n*. The parameter E is defined by formula (3.3). 

We will write the solution of system (3.11) in the form 

Suppose the initial values ~~(0) = rcy. We will introduce the following notation 

a(l) 2 = I-,*, + r12E , ($2) = r2t + IylE2, d3) = & 
1 2 

(3.16) 

Then 

(3.17) 

The coefficients Ci3 naturally vanish when 3Lr,~ = 2. We will write the coefficients Cc2) in two forms, 
convenient for transferring to resonance cases, 

c(2) = 
a(3) 

--(a (l)-3L1) 
J3) 

II 2-h, 
= -C,,-~(a(“-h,) 

2 

(2) 
Cl2 = - Cl3 + 

($3) 

2_h,(a 

($3) 

(‘)- h,) = m(cP- h,) 
2 

(2) 
c21 = 

(43) 

-~(cP-E2h,) = 4$,-g (a(2) - &2) - pg 

1 2 

(3.18) 

c(2) = 
(.J3) 

-C23+2-h, ---(a 
C2) 

22 
- 2E2) + ac3)E2 

($3) 

= 2-3L( d2) - E2h2) 
2 

In (3.15)-(3.17) we take the limit (3.14) for the case when h # 2, using the first equations of (3.18). 
Then 

3L 
(1) 

cp * c22 0 

2(1 +n*)(2-1;)’ 
cl:’ + d, h, -+ x2 

etc. Retaining terms with coefficients of the order of unity as E -+ 0, we obtain 

E 
hap = [ PlapuN-- 

q-2 I 
exp(-hyt*) + 

E -exp(-2t*) 
g-2 

p2ap = p2a,@)ew(-w~*)~ E = 2TlLfnu*) 

The quantities hy, hi are given by formulae (3.14). 
We will now consider the case when AI = 2, h2 # 2. We linearize 

exp(-Art*) = exp(-2t*)[ 1 + (2 - h,)t*] 

(3.19) 

(3.20) 
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We substitute this expression into (3.15), taking into account the second equalities of (3.18), and then 
let )~1 ---) 2. We obtain 

1 { [C(lll ) - G]e -2t* 4r [C (1)12 + G] e-~'2t* } - a(3)(~O) - 2) Ut*e -2t* 
~1 = 2 _ ~ ,  2 

G = ( z ( 3 ) ( ~  (1) - ~ , 2 ) U  

(3.21) 

and a similar expression for 7z2. 
In expression (3.21) all the coefficients are calculated for the same values of n*, ~'i and e for which 

~,a = 2.  
In the limiting case (3.14) we obtain 

Pla~ = Pla~(0)exp(-2t*)  + E t * e x p ( - 2 t * )  (3.22) 

We obtain the same result from the first equation of (3.19) using procedure (3.20). The expression for 
P2~ is identical with the second expression of (3.19). 

We will now analyse the results for the case when e ~ 0 and the remaining parameters of the problem 
are fixed. Suppose the quantities hZx2(0) and E/plaf3(O) are negligibly small [13, 14]. We then obtain from 
formulae (3.7) and (3.19) 

At=  A r ( 0 ) e x p ( - ~ ,  t*) 
', 2 (3.23) 

o ,  
Pla[~ = Plctl3(O)exp(-~'lt ), P2al~ = P2ctl3(O)exp(-e~/2 t*) 

We have the well-known pattern of the qualitatively different stages of relaxation [10, 12-15]. The 
stresses of the light component P l ~  relax together with the difference in the velocities A at the stage 
t* - 1, and a stage of relaxation of the stresses of the heavy componen tp2~  (t* - l/e) then occurs, 
after which the temperatures of the components are equalized (t* - 1/e~). At the next stage rci ~ 1, 
i.e. the stresses are negligibly small. The heat fluxes behave similarly. We can therefore assume that 
the distribution functions at the third stage are close to Maxwellian with different Ti and the model of 
two-temperature gas dynamics [16] holds. 

Relaxation of the stressespla~ is due to collision of the light particles with light and heavy particles, 
and the relaxation P2c~13 is due solely to collision of the heavy particles. In fact, )~°/'c u depends on 
H* ----- n 2 / g t l ,  1(11 , K12 , whereas )~2°/'cu depends only on ~q2. 

2 The situation changes if hA (0) = Ar(0)/T, E =plc~(0). Then formulae (3.23) are changed qualitatively: 
2 , ,  , ,  instead of At(0) we will have At(0 ) - h A  (0)T, and relations (3.19) will hold. The system remembers 

the first stage. In the "resonance" case (3.22), relaxation is not purely exponential, and the solution 
includes the term Et*exp(-2t*).  

It is important to bear in mind that what was said above about the distribution functions refers to 
their "domes", i.e. to the values of)~ for the thermal velocities of the molecules. It is these "domes" 
that determine the values of the lowest moments M (n) of the distribution functions, namely these 
moments occur in the equations of gas dynamics! The "tails" of the distribution functions relax more 
slowly the greater the value of {2 (see Section 4). 

In the equations for higher moments the number of non-uniform terms increase and, consequently, 
the possibility of non-exponential relaxation increases. For example, products of the vector/X by hi, nj, 

2 A,  Ar and Ti occur in the equation for qi. A similar analysis for e ~ 1 shows that the new effect here 
is due to the term z~A 2. Instead of the condition )0 = 2 (see relation (3.14)) we have the condition 
1 + (2/3)y1/n* = 3. 

Above, as usual, when making the transition e --~ 0 we assumed the values of ~/i to be fixed. We will 
express ~:ii in terms of the coefficient of viscosity of the ith gas [2] 

= (2mi~ 1,2 kT  (3.24) 
gi \--~'/i / 3"n;A 2 

and we will use the simplest combination rule 

(3.25) 
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Then 

= ("2"~112 1/2 ---- (~1"1 "~1/2E-I/2 
"/1 \ 2 g l J  E , ~2 ~.~2J (3.26) 

For inert gases g2/Pq depends slightly on the ratio of the masses, and the quantities 7/depend on e 1/2 
[17]. We assumed above the 81/2 was of the order of unity. If e 1/2 ~ 1, thenpza~ decrease more rapidly: 
the stage of relaxation of the stresses of the heavy component will be t* - U 1/2 instead of t* - e-1. Then 
~° = 2B~2 .  

Using the above relations one can also consider other asymptotic forms with respect to the parameters 
of the problem (for example, e ~ 0 for fixed 91/92). 

4. SPATIALLY U N I F O R M  R E L A X A T I O N  OF A BINARY M I X T U R E  
(THE D I S T R I B U T I O N  F U N C T I O N S )  

The results presented in Section 3 for the lowest moments were obtained for arbitrary initial conditions 
and parameters of the mixture (with the requirement that J} must be positive). The explicit solutions 
for the distribution function were obtained, naturally, with considerable limitations [18-21]. 
nevertheless, they demonstrate the most important feature of the process of translational relaxation: 
a considerable slowing down of the relaxation process as w, 2. increases (i.e. on the "tails" off/) .  The 
definitions of the relaxation time usually employed relate to the "dome" offi (for w 2 = 1) [15]. 

The solutions for a simple gas [18, 19] were generalized to binary gas mixtures in [20] and 
multicomponent gas mixtures in [21]. For simplicity, the scattering of Maxwell molecules when they 
undergo collisions was assumed to be isotropic (in this caseA2/A2 = 2/3 instead of 1.03). The conclusion 
was drawn in [21] that two relations between the parameters of the mixture instead of one were obtained 
erroneously [20]. The purpose of this section is to find an accurate solution for a binary mixture of 
monatomic gases without assuming them to be isotropic, to check the conclusion reached in [21], and 
to give a more complete analysis of the solution. 

We will seek a solution in the form [20, 21] 

f i  = ni "2gk-~O exp(-w~)[1 + oti(t)S1/2(w i)] 

(4.1) 
0- -1  2 mi~Y ,.-,( 1 ).. 2x 3 2 

Oti= ~ f J i ,  wi 2kTO(t)' Jll21"Wi ) = 2-- Wi 

Here [3 i is independent to t. The densities ni and the temperature of the mixture T are also constant 
(by virtue of the conservation equations). 

It is necessary to obtain 0 and 9/and the relation between the parameters, which we will call the 
compatibility conditions. 

By definition, the temperatures of the components of the mixture 

(3 ) - l l m i  2 = T 0 ( 1 - ~ i ) ,  T =  E x i T i = c o n s t  T i = ~nik - -~i f id~i  

(the latter follows from relation (1.12) with u 1 =- n 2 )  , and hence 

Xl~I4"X2[~2 = 1, Ti/T = 0 - ( 0 - 1 ) ~ i  (4.2) 

It follows from the last formula that the relaxation will be two-temperature relaxation (T1 a T2), if 
~1 ~ 92" 

We will substitute expression (4.1) into the Boltzmann-Maxwell system of equations. After standard 
reduction, we obtain for the case of Maxwell molecules [2] 

S(1)fJi-ldO 2S(2)OtidO (1) (1) _~i)_O_~ + 
1/2 O" dt 1/2-0d-'7 '=- 4/I;Sl/2~12 nM1M2(1 

(2) { (2)Xi(~i (2) (1) } 
+ l/2 i ~ii ~ j j 1 2 12 1 24"~12 (MI-M2)  2] 2S o~ nrt + x ot 4M M [~ 2M M 

(4.3) 
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(2) (2•ii)112 A 2 k r  r,t~(1)g~(2)] = (moK12]I/2IA1, A2 ] 
ii = 7 2 = 3 - - ' ~ /  tVl2 ,  "1"12 \mlm2d 

i = 1 ,2 ,  j ~ i  = 1 ,2 ,  M i = mi /m  o, m o = m l + m  2 

(4.4) 

The right-hand side of Eq. (4.3) is due to the collision integrals. In its first term we have used the 
equality 

xj( fJ j  - [Ji) = 1 - ~i 

which follows from the first formula of (4.2) andxl  + x 2 = 1. In the first formula of (4.4) we have used 
formula (3.24), and ¢(n) ,~(n), 2, ~1/2 = 31/2~Wi) are Sonin polynomials, n = 1.2. We will introduce 

7~n ~(2L 1 p 
t* = T , g 2 2 t  = ~22 t (4.5) 

(the ratio g2/P is proportional to the relaxation time of a simple heavy gas, equal to  ~2/P2). We will put 

A = B ( I + 8 ) ,  B = 8M1M2-~22G, 8 = 2M1M 2 - 2  

G = k.2---M-~l~22) = ~ ( M I M 2 )  -114, Ix* = I.tl bt2 

(4.6) 

In the expression for G we have used the simplest combination rule (3.24), and formula (3.24). 
We equate the expression with S~n~ in (4.3) to zero, assuming 0 and 13i to be finite, with 0 : 1, xi ;a O, 

Mi  ;a O. Taking relations (4.4)-(4.6) into account, we obtain 

1 d O  = Xi~ig2 
1 - Odt* ~ii + x j ~ j A  (4.7) 

Subtracting and adding Eqs (4.7) with i = 1 and i = 2, we obtain 

X l ~ l ( [ d , * - A  ) = X z ~ 2 ( 1 - A )  (4.8) 

whence 

1 dO 1 
~*,  ~,* = g [ X l ~ l ( [ l  + A ) + x 2 [ ~ 2 ( I + A ) ]  (4.9) 

1 - O d t *  

0 = l + ( O o - 1 ) e x p ( - ~ * t * ) ,  0 o = O( t=O)>O (4.10) 

It follows from the first formula of (4.2) that [31 = 1, if ~2 = 1, and vice versa. In the case when 
[3 i = 1 the coefficients of S~/~ in (4.3) are equal to zero, and from (4.8) we obtain a compatibility condition 
similar to that obtained previously in [20, 21] and which allows of the case M1 ~ 1, when xlg* ~- x2. 

We will now consider the case when 13i ~ 1. After reduction by 1 - 13i, the coefficients ^~ c(n) in (4.3) u l  ,J 1/2 
are reduced to a single equation 

1 d O  

1 - O d t *  
- B (4 .11)  

By virtue of equalities (4.9) and (4.11) 

~.* = 2B (4 .12)  

To determine x1[~1 and x2132 we have the three equations (4.2), (4.8) and (4.12) (taking into account 
the definition of ~* (4.9)). Eliminating, for example, x2132 using the first formula of (4.2), we obtain from 
Eqs (4.8) and (4.12) respectively 

xl[~ 1 = A - 1  _ 2 B - A - 1  
Z g * - I  ' Z = 2 A - l - g *  (4.13) 



Exact solutions of the Boltzmann-Maxwell kinetic equation 11 

From the last equation we obtain A 2 - g* = BZ, whence, using the notation (4.6), we have the quadratic 
equation for B 

(1 - 8 2 ) B 2 - ( 1  + g * ) B + g *  = 0 (4.14) 

Hence, we have the following conditions of compatibility when [~i ;~ 1: 

B = = 1+ 1-1_52 ) j, 13=21+~t* (4.15) 

)~;el, g * * l  (4.16) 

They relate the parameters Kii, K12, mi and do not depend on xi. From the fact that 1~ is positive we 
also have the requirements 

1 + ~ ( 1 - ~ 0 ) [ 8 i > 0  (1-~00)13i<0 (4.17) 

The quantity 00 is defined by the second relation of (4.10). 
It follows from inequalities (4.17) that [3 i must have the same signs. 
We will analyse condition (4.15) taking this requirement into account. It is clearly a contradiction 

when M1 < 1: for example, for commensurable ~c12 and ~:22 and g* > 1 we have from the second 
expression of (4.6) B < 1, and the right-hand side of the expression for B (4.15) is greater than or of 
the order of unity. We will initially assume that the combination rule (3.25) holds. Substituting the 
corresponding formula of (4.6) for B into condition (4.15), we obtain equations relating M 1 and g*, 

1 314A1 ~'l* 1/2 ~Ilq-fl-lLl'*l~2/l/21 
8[Ml(--M1)] ~ ( T )  = 1__~2) J 

Their numerical solutions show that [~i have the same signs for B = B .  The same conclusion is reached 
if we do not use rule (3.25): by specifying the values of g* and M1 in the sections [0.25, 4] and [0.1, 0.5] 
respectively, we find ~ClJ~:22, etc. For example, for an He-Ne mixture at T = 300 Kwe have M1 = 0.165, 
g* = 1.593, B+ = 1.879 and B_ = 0.913. When B = B+ the coefficients 13i have different signs. When 
B = B_ we o b t a i n  (g212/K22) 1/2 = 0.491, Xl~ 1 = 0.264, Z = -1.254, 0.688 < 00 < 1 (the last forxi = 1/2); 
these data are used in Fig. 1 for xi = 1/2 and 00 = 0.8. 

We will put (see (4.1) and (4.5)) 

f i  - O-31ZI1-13i( ~ -  1)(~-o)]exp[02(1-1)1,  0 2 rni{~ 
gi - f i ( t  = ~)  - 2 k r  

whereJ}(t = ~ )  is the Maxwell function. As t -~ ~ the functions& tend to unity more slowly the greater 
the value of v 

Figure 1 illustrate this. In the figure the continuous curves give the values of& when ~1 = 0.528,  and 
the dashed curves give g2 when [32 = 1.472 for t* = 1/2, 2 and 4 (the value of t* is found from formula 
(4.5)). When t* = 8 and v < 10, the values ofgi are close to unity. 

When ~3i = 1 the graphs ofgi against Z't* are the same as for a single-component gas [15, 19] (for 
the same value of 00). 

5. H O M O E N E R G E T I C  A F F I N E  FLOWS 

In the case of Maxwell molecules, the infinite system of equations of moments (1.3) can be split into 
recurrent closed systems of linear inhomogeneous equations with variable coefficients, i¢ ~(n) depend ..... i{a} 
only on t, and consequently 

Du 1 
- (5.1) I J--  
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The coefficients of Eq. (1.1) must be functions of t, so that for this class of flows 

= ~/t(n) (n) U s gta~(t)r~ + q)a(t) . . . .  i{a} = Mi{ai(t  ), n > 0 (5.2) 

(we recall (n) that Mi{a} = 0. Equation (1.1) reduces to the form 

~--~"-(/iTIg[3y+ F i ~ -  ( p l F I ~ + D 2 F 2 ~ + ' "  +ONFNf~) = Ji 
iB 

f i  = f i (Ci ,  t), f i (Ci ,  O) = gi(Ci) > 0 

(5.s) 

where gi are specified functions of C i. If the partial external forces Fi, referred to mi, are the same and 
equal to F, the coefficient of the third term on the left-hand side is equal to zero (the last term in (1.7) 
vanishes as a consequence of the equality ZpiVi = 0). The quantity F is represented by a linear function 
of the coordinates, and the necessary relations between the coefficients are found from Eq. (5.1), taking 
the first formula of (5.2) into account. 

A more interesting case is when Fi are different. Then F i = Fi(t ). The function q%(t) are found from 
the system of equations 

dq% ~-, Pi(t) . 
+ Illa~tp ~ = )_-X-7-~Fia(t) 

dt" 

and the coefficients ~a~(t) are given by the formulae [22] 

gta[ 3 = {lay~It28¢zl~ + (ayyaaf ~-  a~,lay~)t + a~f~}H -1, a~[~ = ~¢x~(O) 

H = lSy~ + ay~t] lay~ ] t 3 + 1/2(awa~ 8 2 = -ay~a~r)t  + artt + 1 
(5.4) 

Here  lay51 is the determinant of the elements av~ while 8a~ is the Kronecker delta, and we have used 
the rule of summation over repeated subscripts cx, 13, 7, 8 = 1, 2, 3. Formulae (5.4) are found from the 
system of equations D ( ~ r ~ ) / D t  = 0. 
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From the equation of continuity we obtain 

p = p(O)H -1 (5.5) 

If q~ = 0 we have Y~PiFi = 0. In this case, neglecting the collision operators Ji, we obtain [23] the "free- 
molecule" solution of problem (5.3) 

f i = gi(Eix, Eiy, Eiz) 
t 

Ei~ = ( ~  + a~ffl)Cif ~ _ i(~)af ~ + aaf~t)Fif ~dt (5.6) 
o 

We will now review the moment solutions. Solutions which enable problems of the applicability of 
the Navier-Stokes, Burnett, etc. approximations to be considered are of paramount interest. The main 
part of previous paper is devoted to stresses in a simple gas. Solutions of the equations for the diffusion 
velocities, due to the difference in Fi, were obtained in [22] in the case of a binary gas mixture. 

Henceforth we will confine ourselves to a simple gas of Maxwell molecules when there are no external 
forces, assuming q~ = 0. 

We will write the energy equation in the form 

dp +5 2 
d--~ 3 ~ a P  + 3~a~P~a = 0 (5.7) 

For the stressesp~6 and the third-order moments Q~v we obtain 

1 dpaf~ + P a f ~  + 2 (p~,~[~,~) + 2p (~a[~) + ~-'~Pco = 0 (5.8) 
dt 

dQa~r ~v~Qa~  +~t~Qa~ +~ta~Q~v +gt~Q~r + 
dt 

1 9 
+ ~-H--~(~ Q ~  , - q~$~,-  q ~ , -  q , ~ )  = 0  

z - go _ g(O) R k 
R9(O ) p(O)' m 

(5.9) 

We have used relations (1.8)-(1.10) here; R is the gas constant. 
The initial values p(0), p~(0) ,  Q~6v(0) when t = 0 are specified. The quantity "c is the translational 

relaxation time, calculated from the initial values. 
System (5.7), (5.8) closes the problem of determining the gas-dynamic variables, i.e. p for specified 

9 and u. It is useful to determine 

H ~  = paD~p, I-Ia~ = 0 (5.10) 

It follows from Eq. (5.7) that 

p = p(O)H-5/3II, [ 3i  ~ f f l f~d t ]  FI = exp _2 

\ 0 / 

(5.11) 

Assuming FI = 1, we obtain p in the Euler approximation. For FIll ~ we obtain a closed but more 
complex system of equations 

dHc O 2 Hc O 
dt 3 H~(~v~H~v +gtn') + 2 (II~vt[tv[~) + 2 (~c4~) + " ~ -  = 0 (5.12) 

Investigations of shear flow were the origin of this problem [24, 25]. After this, solutions with an 
unsteady velocity were investigated [26-32, 23, 23]. Many results are summarized and supplemented 
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in [1] (see also [32]). Theorems of existence and uniqueness of the solution of this initial problem for 
the Boltzmann-Maxwell equation were proved in [4] (taking into account the condition F = const). 

Equations (5.7)-(5.12) have, generally speaking, been solved numerically. In the papers mentioned, 
particular solutions of systems of these equations were found in terms of elementary functions, when 
they were reduced to a system of linear equations with constant coefficients. The so-called dominant 
[24] exact solutions, i.e. solutions for those initial conditions when the initial boundary (kinetic) layer 
disappears, were of particular interest. For such solutions comparisons of the individual approximations 
of the Chapman-Enskog and Hilbert methods with one another and with the exact solution are obvious. 

The initial boundary layer is due to the fact that Eqs (5.12) for a Knudsen number Kn = "C/to ~ 1 are 
equations with a small parameter with a derivative, where to is the characteristic time. For these special 
solutions the Chapman-Enskog series is a power series with constant coefficients, and hence the 
dominant solutions are determined by the requirement IIa~ = const. From system (5.12) we obtain 
algebraic equations defining 17~ for and t and Kn. It was proved in [1] that, by expanding in Kn ~ 1, 
we obtain a Chapman-Enskog series for II~l~, which converges for sufficiently small Kn. Substituting 
this series into expression (5.11), we obtain a solution of the gas-dynamic problem using the equations 
of the Chapman-Enskog method. By expanding the function II in terms of Kn for fixed t, we obtain a 
solution by the Hilbert method. 

It is interesting to obtain and investigate the dominant solutions for the special case when the 
Chapman-Enskog series for IIa~ depends on t and is asymptotic. This occurs in the case of plane 
outflow-inflow [22], when only all = a22 are non-zero, i.e. 

X1 X2 = p(0) 
Ul = t"~C' U2 = t-'~C' U3 = 0, H = (1 + t*) 2, p (1 + t*) 2 

1 t* t ~ " ,  all > 0 
C = - - ,  = - = a n t ,  t ~  [0, tf], t f  = 

all C L l / l a n l  ' a l l <  0 

(5.13) 

From relations (5.11) we have 

p = p(0)(1 + t*)-l°/3II, 
{2 t* 1-1 "~ 

rI = exp[=  dt*] 
[ 5 0 1 + t  ) 

(5.14) 

To solve the gas-dynamic problem it is sufficient to determine H33 , for which it follows from Eqs (5.12) 
that 

drI33 2 t , ) ( I I23-  1-I33-2) + 3  1-I33 
d--7- + 3(1----~-- 13(1 + t*) 2 

0 

I~ = Knsignall,  Kn = lazllX, x = go/(Rp(0))  

(5.15) 

The quantity c is chosen as the characteristic time. We recall that in this case the viscosity coefficient 
g = goT, go = const. 

We will obtain the hydrodynamic limit as Kn --+ 0 and t * , p ( O )  and Ha~(0) are fixed. For fixed t and 
all this limit is reached by reducing "c, i.e. the kinematic viscosity g0/9(0). 

Introducing the variables 

= (1 + t*)~ ,  u(~) = exp glrI33 

and then 

z = 1/~ ,  u = z ~ 3 y ( z )  

we reduce Eq. (5.15) to the standard form 

zd__~2 . dy  2 + (3 - z)'7-az - 3Y  = 0 
d z  

(5.16) 
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The general solution of Eq. (5.16) is 

y = C1~(2/3, 3; z) + C2W(2/3, 3; z) 

where @ and q~ are degenerate hypergeometric functions of the second integer argument [33] (in the 
notation employed previously in [34] these are the functions M and U respectively). Consequently 

3 Cqb' + ~P' d~(213, 3; z) 
@' - (5 .17)  FI33 = - I - ~ z  c o +  w ,  dz 

and the arbitrary constant C is found from the condition I~33(Z = 1/[3) = [I33(0 ). 
We will first obtain the dominant solution for outflow (all > 0). When [3 --+ 0 the function [133 must 

tend to the Navier-Stokes value 4/3z). For this solution we have z ~ ~, as [3 + 0. In the neighbourhood 
of an infinitely distant point @ and T can be expanded in asymptotic series [33] 

= eZz-7/3[1 + O ( l l z ) ] ,  W = Z-W3[1 + O ( l l z ) ]  

Further, in fact following the principle of minimum singularity, we assume C = 0, in which case 

d 3 d ,  , 1"2 "~ -1 
II33 = - l - ~ z ~ z m V ~ , 3 ; z ) ,  z = K n ( l + t * )  (5.18) 

We will denote the dominant solution by the superscript d. The expansion of the quantity (5.18) with 
respect to large z (small [3) is 

d 4 -1 4 -2 16 -3 176 4. -1 
1-I33 5Z ~Z - ~ Z  = - +'-ff i -z  + . . . .  z = 1 3 ( 1 + t * )  (5 .19)  

Series (5.19) is asymptotic, since the ratio of the (n + 1)th term to the nth term is of the order of nz q.  
A similar analysis for the case of inflow ([3 < 0) shows that here 

d 3 d ,  = ( 2  ) -1 
I-I33 = - l - ~ Z ~ z z m ~ 5 , 3 ; z  , z = - K a l ( l + t * )  (5.20) 

The expansion of (5.2) with respect to large z is given, naturally, by formula (5.19) with [3 = -Kn. 
The right-hand part of Fig. 2 corresponds to outflow ([3 > 0) and the left-hand part corresponds to 

inflow ([3 < 0). The exact values of II3d3 (5.18), (5.20) are given by the continuous curve. The approximate 
values of II3d3, obtained using series (5.19), are represented by the dashed curves. The first term of 
expansion (5.19) is given by the Navier-Stokes approximation (line 1 in Fig. 2), the first two terms are 

4 
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given by the Burnett approximation (2), the first three terms are given by the super-Burnett approximation 
(3), and curve 4 corresponds to the terms taken into account in (5.19). 

In the case of outflow, the Burnett approximation gives the best agreement with the exact solution, 
but for inflow the Burnett approximation gives a worse agreement with the exact solution than the 
Navier-Stokes approximation. 

A similar example of the high accuracy of the Burnett approximation was indicated for the first time 
in [27] (the exact solution for one-dimensional outflow), and for the other solutions in [31, 32]. The 
evolution of opinions on the significance of Burnett's equations and examples of Burnett effects are 
described in the review [351 (see also [36]). 

We can now obtain the pressure, i.e. the function 17. Substituting expansion (5.19) into expression 
(5.14), we obtain the Chapman-Enskog solution 

{ _ 3 2 . 3 , (  t* ~ ) +  11= exp ~ t *  274~2t*(2+t*)-'ffflJt ~1+ + t .2 

+ a-v~lJ t (2  . . .  

(5.21) 

It is important to emphasise that the Chapman-Enskog series for P33 = Pri33 is not a power series 
in Kn. This is a general property of the Chapman-Enskog method, unlike the Hilbert method [4]. We 
obtain a solution by the Hilbert method by expanding the right-hand side of relation (5.21) in series 

4 .  
= l+~[~t +81--p2t*(5t*-6)- II 

32 3 , 
-218713 t [27+5t*(9+2t*) ]+  16 [~4t,[1782+ .] 

19683 "" 

(5.22) 

Substituting expression (5.18) or (5.20) into relation (5.14), we obtain the dominant solution for the 
pressure p. For example, for outflow 

rid ( l + t )  Z ~ 5 , 3 ;  I~l(l+t*) ~ g, 3; 1 (5.23) 

Expanding expression (5.23) in terms of Kn ~ 1, we arrive at relation (5.22). 
We will relate the values of 11, given by the Navier-Stokes equations and corresponding to the 

approximation of the Hilbert method, to the value of FI ~. In the case of outflow, we obtain respectively 

61 = ~-~exp~-~Knt ), ~2 = -~Knt  , t* =-c 

where the function ri d is given by formula (5.23). The values of the ratios 61 and c~2 are represented by 
the dashed and continuous curves in Fig. 3, respectively. 

The Navier-Stokes equations have much higher accuracy, since o" 1 is much closer to unity than G2. 
Using the example of shear flow it was shown in [32] that the solutions in the first Chapman-Enskog 

(Navier--Stokes) approximation and the third Chapman-Enskog approximation agree much better with 
the exact solutions than the solutions in the corresponding Hilbert approximations. Certain 
researchers [4] proposed to modify the Hilbert method in such a way that, in the zeroth approximation, 
the Navier-Stokes (rather than the Euler) equations are obtained, and further, a sequence of 
inhomogeneous linearized Navier-Stokes equations. This modification in fact leads to a refinement of 
the Hilbert method [32]. 

In general, the constant C is non-zero and is determined by the initial value of ri33(0), on  which, 
generally speaking, the comparative accuracy of the differen t approximate methods depends. The 
different of C from zero for small Kn is a measure of the effect of the initial kinetic (Knudsen) layer. 
The expansion of C in series as 13 --+ 0 is obtained by the method of matched asymptotic expansions, 
while the Hilbert series is an outer expansion. A comparison of the results obtained by the 
Chapman-Enskog and Hilbert methods, using the example of a non-dominant exact solution, has been 
given in [30] for one-dimensional outflow. 
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Considerable attention has been devoted [1, 24] to constructing iterative schemes, which differ from 
that which the Chapman-Enskog expansion gives. The regrouping of the Chapman-Enskog series 
obtained in this way may turn out to be effective: several terms of the "regrouped" series give a better 
approximation to the exact solution for shear flow than the corresponding sections of the Chapman- 
Enskog series [1]. However, this result is only a particular one [30]. 

The main attention, in the publications mentioned, has been devoted to the gas-dynamic limit 
[3 --> 0, but other asymptotic forms were also considered [1, 22-24]: expansions of the solutions about 
the flee-molecular solution, in small aal~ (the effect of small velocity gradients on the translational 
relaxation process), etc. Interesting results were obtained in [28, 29, 31] when analysing the asymptotic 
behaviour of certain exact and approximate solutions as t --> ~ .  The exact solutions considered in these 
publications are asymptotically stable (p ---> 0 as t ---> +o), but their Navier-Stokes approximations are 
asymptotically unstable (p ---> ++). The Burnett approximations improve the Navier-Stokes approxi- 
mations, giving a qualitatively correct result (p --> 0) [31]. This is one example of the effectiveness of 
the Burnett equations. 

A considerable number of papers on shear flow 

U 1 = a12x2, u 2 = 0 ,  U 3 = 0, P = const, a12 > 0 

have been published [37-39]. However, additional assumptions were made together or separately: 
approximate models of the collision operator were used, and it was assumed that the external force is 
proportional to the peculiar velocity of the molecules (this force was introduced in order that the 
temperature of the shear flow should be finite as t --+ oo). As has already been pointed out in the 
introductory part of this paper, we do not consider this aspect of the subject due to limitations of space. 

Considerable interest has been aroused [1, 37-39] by the peculiar "instability" of the third-order 
moments in shear flow [24]: for Kn = al2"C > 3/~2 and t / z  ~ oo the heat flux q3 approaches infinity, 
and when Kn < 3A/2 it approaches zero. However, similar peculiarities in the behaviour of non- 
hydrodynamic moments are also shown by other flows of this class. 

Consider one-dimensional outflow-inflow 

x, p(0) (5.24) 
ul = t--+~c' u2 = 0, u 3 = 0, P = l + t *  

The quantities c, t* and 13 are found from relations (5.13) and (5.15). 
We obtain, for example, [32] 

P13 PI3(0)( 1 + t*) -2-1/1~ = , P23 = P23(0)( 1 + t*) -1-1/13 (5.25) 
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For outflow ([~ > 0)P13 andp23 decrease as t* increases, but for inflow ([~ < 0) this can only occur 
for ~ < -1/2 and ~ < -1 respectively. 

Consider the third-order moments. For the flow (5.24) we introduce the variable rl = In(1 + t*). We 
have from Eqs (5.9) 

Q123 = Q123(0)exp [ - (2  + 2~)TI ] 

For (Q~11, Qk22, Q~33) with k = 1, 2 we obtain two homogeneous systems of ordinary differential equations 
with constant coefficients. Writing the solution in terms of exp(-)~rl), for the eigenvalues )~ we obtain 
the formulae 

3 - k a  
3 I 

12fa {~, 13 + 12(4 - k)~ q: [25 + 24(4k - 5)[3 + 144~2] 1/2} 213' 

where k = 1, 2. The expressions for k = 2 also hold for the system (Q311, Q322, Q333). 
When [3 > 0 all )~ are positive. When 13 < 0 the eigenvalues vanish for the following values of I [~l 

respectively: (0.75, 0.196, 0.637) for the eigenvalues with k = 1 and (1.5, 0.365, 0.912) for k = 2. 
Hence, in the case of inflow third-order moments decrease for fairly high Kn, while for low Kn they 

increase (similar to the stresses (5.25)). 

6. S P H E R I C A L  O U T F L O W - I N F L O W  

The Nikol'skii transformation. The flow (2.5) is described by the locally Maxwell function (2.6), provided 
that the state is locally Maxwellian at the initial instant of time also. 

This flow is unique in the class indicated in Section 2, which belongs to homoenergetic affine flows 
(uniform in the terminology used by Nikol'skii [40-42]). Unlike the other flows (5.2), the pressure satisfies 
Euler's equation 

p = p(0)(1 +t*)  -5 

In the case of Maxwell molecules, we obtain [22] from system (5.8) 

IIa~ = IIal~(0)exp{[(1 + t*) - 2 -  1]/(21])} 

Here we have used the notation (5.10) and (5.15). 
We will fix IIa~(0) and [3. Then for outflow ([~ > 0) as t* ---> ~ we have 

IIa~ __> IIa[~(0) exp{_l/(213) } ;e 0 

i.e. H ~  approaches a finite value, and not the locally Maxwell value IIa~ = 0. In the case of inflow 
(c < O, f~ < O, t* = - t / I c  I) as t* ~ -1 we have Ila~ ~ 0. 

In the Navier-Stokes, Burnett, etc. approximations, H ~  = 0. The latter makes spherical outflow- 
inflow of less interest (from the gas-dynamic point of view) compared with the remaining flows (5.2), 
for which certain I I ~  ~ 0 in the Navier-Stokes approximation. However, in this case, it is possible to 
obtain interesting results for the distribution function. 

Solution (2.6) suggests that one should introduce the variable C* = (1 + t*)Ci instead of Ci. In the 
variables t*, C* on the left-hand side of the kinetic equation, only the term with the partial derivative 
ofj}(t*, C*) with respect to t* remains, and a factor appears in front of the collision operator which 
depends on v and t*. Eliminating this by introducing a new variable instead of t*, we reduce Eq. (5.3) 
to the form [42] 

3f*/~Y = i * ,  f * =  f i (Y ,  C*), Y = Y(v, t*) (6.1) 

(external forces are ignored). 
It is assumed [42] that the intermolecular force is equal to ~:ijr -v, ~:ij = const, r is the intermolecular 

distance, and the factor v > 2 is the same for all intermolecular interactions of particles of sorts i and 
j, where i , j  = 1, 2 . . . . .  N (the case of molecules in the form of elastic spheres was considered previously 
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in [41]). In the case of outflow when t* --~ oo and v > 7/3 the function Y approaches a finite limit Y= 
and when v ___ 7/3 we have Y ~ oo (for Maxwell molecules v = 5). In the case of inflow Y= = oo when 
v _> 7/3 and Y= ¢ 0 when v < 7/3. 

As a result the following assertion holds [42]: suppose we are given the solution of problem (3.1) 
1~ = )~(t, ~i), which, as t ~ o% approaches the Maxwell function]}(oo, gi) ~ f ~ ( ~ 2 ) .  Then, for the same 
initial conditions, the solution of problem (6.1)f* = )~(Y, C*) is known. When t --9 oo the distribution 
function 3~(Y, C*) ~ )~(Y=, C*), i.e. it does not approach the locally Maxwell function fff if v > 7/3 
(outflow) and v < 7/3 (inflow), since Y= ¢ ~o, and 3} ~ fff in the remaining cases when Y= = ~o. 

For flows of class (5.2) the conditions of applicability of the H-theorem [1, 6] are, generally speaking, 
not satisfied. 

Using the results of Section 4 [18'21, 43, 44], we obtain explicit expressions for the distribution 
functions in the case of outflow-inflow. 

A more general formulation of the problem is as follows [45]: when these are external forces in a 
simple gas one can formulate transformations which reduce the Boltzmann-Maxwell kinetic equation 
to the form (6.1). The flows obtained are the superposition of spherical outflow-inflow and rotation 
of the gas. When there are no external forces one obtains Nikol'skii's results [42]. 

7. T H E  D O M I N A N T  ( N O R M A L )  S O L U T I O N S  

We will continue the discussion (see Section 5) of the dominant exact solutions. For clarity we will 
consider the flows (5.24), when, according to relation (5.11), the pressurep is expressed in terms of the 
ratio gIz1, which satisfies the equation 

dI-[l 1 - 2131-I211 - (2~ + 3)1"111 - 4~ (7.1) 
313dln(1 + t*) 

where [3 is expressed in terms of the Knudsen number (5.15). Its solution is 

I 5 + r 2  ] 5 + r l  1+ Q [ I + Q ]  -1 
l-Ill = - 2 

E r2-rl ] r2-rl 
Q = 5+r2+21711(0 ) 1 ( l + t * )  q, q -  3 

rl ,2--  -i!¢E1+ 413 • Jl+ 413(  + [3)] 

(7.2) 

For any t* > 0 the following dominant solution holds 

5 + r  1 d 
FIll = l-Ill(O) - 2 (7.3) 

For outflow ~ > 0 and q~ < 0, and for inflow 13 < 0 and q > 0. Correspondingly, as t* ~ ~, and 
t* ~ -1 we have Hn ~ IIl~, i.e. the solution approaches the dominant solution more rapidly the smaller 
the value of I [3 [- Expanding expression (7.3) in terms of small 13, we obtain the Chapman-Enskog series 
(external expansion of the solution of Eq. (7.1)), in this case with constant coefficients, which converges 
absolutely for ] 13 ] < 1/2. (for a rigorous proof see, for example, [1].) Hence the dominant solution can 
also be obtained by assuming 1711 to be constant; from Eq. (7.1) we obtain a quadratic equation for 
[In, and the choice of the root is governed by the fact that the first term of the expansion must be the 
Navier-Stokes solution. 

The properties of the solutions for certain other flows [24, 25, 31, 32] are similar. In the case of (5.13) 
the terms of the Chapman-Enskog series depend on t*, and the series itself is asymptotic. According 
to the solution (5.18), H313 depend only on z = ~-t, and the quantity can be written in the form 

(1) 
3P33 _ ~pVU 

~ - 4 p  

The stressp~ 1) is given by Navier-Stokes approximation. 
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Hence, the dominant solution (5.180 depends on t via the gas-dynamic variables, and hence (like the 
solution (7.3)) it can be called normal in the Hilbert sense. However, in kinetic theory it is the 
approximate solutions of the kinetic equations in the form of outer asymptotic expansions, each term 
of which is expressed in terms of the gas-dynamic variables and their spatial derivatives, that are usually 
called normal [1, 4, 6]. Algorithms of the expansions are known, unlike the algorithms for constructing 
dominant solutions. 

The most important property of the dominant solution is the existence of non-linear local expressions 
for the transport properties. Their accuracy and area of application depend on the specific conditions. 
The detection of cases of degeneracy of the Chapman-Enskog series was the origin of investigations 
for real flows. The first case was apparently slow steady flows, described by the linearized Boltzmann- 
Maxwell kinetic equation (see the history of the problem in [46]). Non-linear examples for a gas of 
Maxwell molecules were given later: heat transfer between parallel plates [47] and plane Couette flow 
with heat transfer [48]. A review and an extension to a mixture of gases is given in [49]. 

It was shown in [47], by analysing an infinite chain of transport equations for the coefficients of the 
expansion o f f  in Hermie polynomials for Kn ~ 1 that, in the case of heat transfer, the conservation 
equations in any order with respect to Kn reduce to equations in the Navier-Stokes-Fourier 
approximation (as also in [46]) 

(1) ~, TdT p = const, Pc~l~ = O ,  qy = qy - o ~yy = const, ~'o = const 

which give the dominant solution. 
In the case of Couette flow [48] the structure of the expansion with respect to Kn ~ i is established, 

in particular, 

qy ~tdux 
* - = gl(e2), q * -  = g2(e2), e = - = const (7.4) Pxy = Y "-~ p dy 

Pxy qy 

Here x and y are the coordinates along and transverse to the plates, the stress p~) and the heat flux 
qy0) are given by the Navier-Stokes-Fourier approximation, and gl and g2 are power series in ~2 with 
constant coefficients. The results for the problem of heat transfer [47] follow from these results when 
ux=0 .  

Within the framework of the model kinetic equation (the BGKV-model) it was possible to obtain 
dominant solutions (normal solutions in the terminology of a number of researchers [50-54]) of the 
problem of heat transfer [50] and on the problem of Couette flow [51] for the distribution function 
with diffuse reflection of molecules from the walls. To "liquidate" Knudsen layers, the temperatures 
of the plates were assumed to be equal to zero and infinity in [50] and zero in [51]. 

The results of calculations of this flow by the method of direct statistical modelling showed [52, 53], 
that outside the Knudsen layers over a wide range of values of the governing parameters, the quantities 
p~ and q~ are functions of only e2 e [0.2.8], with extremely high accuracy. The functions gl andg2 were 
obtained; these varied from unity (the Navier-Stokes approximation) to =0.2. 

The existence of non-linear local expressions for the transport properties (the considerable difference 
of gl andg2 from unity) in the case of Couette flow can be explained qualitatively as follows. The Knudsen 
layers can be made fairly thin by reducing the temperatures of the plates. However, for a high Mach 
number of the moving plate, the temperature of the gas outside the layers will be high, and the parameter 

will be of the order of unity (p = const), so that the transport properties here will be local and differ 
considerable the Navier-Stokes approximations. 

The result is one of the confirmations of the need to the search for models which differ from the 
Navier-Stokes model. During the course of this, on the basis of an analysis of the profiles of the macro- 
parameters in a storing shock wave in a monatomic case, calculated by the method of direct statistical 
modelling, it was possible to establish [54] approximate local relations for the transport properties 

Pxx F ( g(T)dux, ~,(r)dr'), qx = Fq ' ~ ~x) c 

which are extremely accurate. Here, the x axis is directed along the flow, g and )~ are the coefficient of 
viscosity and the thermal conductivity, and Fp and Fq are functions of these variables. 
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8. P O W E R  S O L U T I O N S  

The Maxwellian is a unique solution of the equation 

J = 0 (8.1) 

However, well-known conditions [4, 5] are imposed on the integrability of the distribution function in 
velocity space in this case. Otherwise it is possible to obtain power solutions [55]. 

The collision integral can be written in the form 

J = Iw(ppllp2P3)F(ppllp2p3)dx 

F(PPllP2P3) = f f l -  f 2 f  3, d'c = dPldP2dP3 

Here p is the momentum, E(p) is the collision energy of the particles, w(ppllp2P3) = 
U(ppl I p2P3)8(p + Pl - P2 - p3)8(E + E1 -E2 -E3) is the transition probability, U(ppl I P2P3) is the matrix 
element, and 8 is the delta function. In this section we used the notation employed in [55]. The functions 
w and F possess the following properties 

w(pPIIP2P3) = w(plplP2P3) = w(pzp31pp l) 

F(pPl]P2P3) = F(paP]P2P3) = -F(p2P3tPPl) 

Moreover, we assume that E(p) and U(ppl I P2P3) are homogeneous functions 

E(Lp) = ~,l~E(p), U0~P~,Pl[~,P2)~P3) = )~mu(pPl[PlP3) 

and the system is isotropic, i,e. the functions w and E are invariant under arbitrary rotations 

E(~p)  = E(p) ,  w(~p~pl [~pz~p3)  = w(ppllp2p3) 

We will seek a solution of Eq. (8.1) in the form 

f -  E s (8.2) 

where s is a contant. Using the properties of symmetry of the collisions, and transformations of the 
rotation and extension, it is possible to reduce the collision integral to the form 

= IE~Iw(ppl lpEP3)F(pp,  lp2p3)[E-V+ E-I v - E~ ~ _ E~V]dx J 

When F(pPllP2P3) we obtain the Maxwell solution, and when the expression in square brackets 
vanishes we obtain the required solutions: s = So when v(s) = 0 as a result of conservation of the number 
of particles, and s = sa when v(s) = -1 due to conservation of energy. 

For particles with a power intermolecular potential V(r) = Vo r-a 

~s 1 = - ( m + 3 d ) / ( 2 ~ ) ,  m = , 4 + 2 6 ( 1 - s  -l) 
S [ s o s 1 + 1/2 

Here d is the dimensionality of momentum space. For Maxwell molecules, when cz = 4 and m = -1, 
we have 

s o = - 3 / 2 ,  s 1 = - 2  (8.3) 

According to relations (8.2) and (8.3), the distribution funct ionf  ~ ~ when p ---> 0, and the integral 
for the density (energy) of the particles either diverges at zero or at infinity, i.e. these solutions do not 
hold over the whole of velocity space. They are examples of intermediate asymptotic forms for open 
systems. 

The search for such solution [55] was stimulated by research on the kinetic theory of weakly turbulent 
plasma [56], where the kinetic equation is formulated for the "density" of waves in wave-vector space. 
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D i f f e r e n t  examples  of  p o wer  so lu t ions  ( in par t i cu la r ,  for  i so t rop ic  t u r b u l e n c e )  we re  g iven  in  [55], which  
ho ld  in  r eg ions  in  wh ich  se l f -s imi lar  so lu t ions  exist. 

I t  shou ld  b e  n o t e d  tha t  so lu t ions  wh ich  desc r ibe  the  o c c u r r e n c e  o f  smal l  flows in  the  r e g i o n  of  
equ i l i b r ium or  s ta t ionary  d is t r ibut ions  are  obviously  real ized m o r e  o f ten  t h a n  single-flow power  solut ions.  
Vers ions  o f  a p p r o x i m a t e  so lu t ions ,  which  differ  on ly  sl ightly f r o m  the  p o w e r  so lu t ions  desc r ibed  above  
were  g iven  in  [55]. 

This  r e sea r ch  was  s u p p o r t e d  f inanc ia l ly  by  the  R u s s i a n  F o u n d a t i o n  for  Bas ic  r e sea r ch  (02-01-00501),  
t he  "S ta te  S u p p o r t  for  the  L e a d i n g  Scient i f ic  Schools"  p r o g r a m m e  (NSh-1984.2003.1)  a n d  the  Min i s t ry  
of  E d u c a t i o n  o f  the  R u s s i a n  F e d e r a t i o n  (E02-40-52) .  
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